EconPapers    
Economics at your fingertips  
 

Genetic algorithm for optimization of energy systems: Solution uniqueness, accuracy, Pareto convergence and dimension reduction

A. Ganjehkaviri, M.N. Mohd Jaafar, S.E. Hosseini and H. Barzegaravval

Energy, 2017, vol. 119, issue C, 167-177

Abstract: Genetic algorithm (GA) is widely accepted in energy systems optimization especially multi objective method. In multi objective method, a set of solutions called Pareto front is obtained. Due to random nature of GA, finding a unique and reproducible result is not an easy task for multi objective problems. Here we discuss the solution uniqueness, accuracy, Pareto convergence, dimension reduction topics and provide quantitative methodologies for the mentioned parameters. Firstly, Pareto frontier goodness and solution accuracy is introduced. Then the convergence of Pareto front is discussed and the related methodology is developed. By comparing two different best points (optimum points) selection method, it is shown that multi objective methods can be reduced to single objective or lower dimensions in objective functions by using ratio method. Our results establish that our proposed method can indeed provide unique solution of satisfactory accuracy and convergence for a multi-objective optimization problem in energy systems.

Keywords: Multi-objective optimization; Genetic algorithm; Energy system; Pareto convergence (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216318394
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:119:y:2017:i:c:p:167-177

DOI: 10.1016/j.energy.2016.12.034

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:119:y:2017:i:c:p:167-177