Pricing model for the charging of electric vehicles based on system dynamics in Beijing
Xingping Zhang,
Yanni Liang and
Wenfeng Liu
Energy, 2017, vol. 119, issue C, 218-234
Abstract:
This paper proposes a system dynamics model to develop a real-time charge pricing (RCP) mechanism of electric vehicles (EVs). The model includes six modules: power consumption of EVs, generator set dispatching, charge pricing, user response, benefit evaluation of all stakeholders and charging stations' life-cycle net income. We consider four charge pricing scenarios and design a RCP mechanism for Beijing according to the simulation results. Sensitivity analysis proves that the model is robust, and the increased charging power of EVs is beneficial for charging service operators. The empirical results indicate that RCP based on the peak-valley time-of-use tariff is propitious for the existing development scale of EVs. In addition, the government subsidies are important to drive EV development in the initial period. However, it should be phased out to reduce the financial burden accompanying the amplification of the scale of EVs.
Keywords: Electric vehicles; Greenhouse gas emissions; Real-time charge pricing; System dynamics (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216318631
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:119:y:2017:i:c:p:218-234
DOI: 10.1016/j.energy.2016.12.057
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().