Cellulose and activated carbon based flexible electrical double-layer capacitor electrode: Preparation and characterization
Kirill Murashko,
Daria Nevstrueva,
Arto Pihlajamäki,
Tuomas Koiranen and
Juha Pyrhönen
Energy, 2017, vol. 119, issue C, 435-441
Abstract:
Supercapacitors are efficient electric energy storage devices with a wide range of possible applications. In this study, a natural cellulose-activated carbon composite material that can be used as an electrode in a flexible supercapacitor is prepared using a phase inversion technique. The composite material preparation and testing methodology are described and the electrochemical characteristics of the composite material are analysed as a function of the activated carbon (AC) to natural cellulose (NC) mass ratio. Analysis of the influence of the AC/NC mass ratio on the electrochemical characteristics of the composite material demonstrated the importance of optimal mass ratio determination prior to manufacture. To prove an applicability of the NC binder, the electrochemical characteristics of the composite material prepared with a NC binder are compared with those of a composite material with a standard poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) binder. The experimental results confirm the applicability of using NC as a binder in the preparation of a composite material that can be used as a flexible self-standing supercapacitor electrode.
Keywords: Natural cellulose; Self-standing electrode; Electric double-layer capacitor; Binder; Activated carbon (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216318436
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:119:y:2017:i:c:p:435-441
DOI: 10.1016/j.energy.2016.12.038
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).