EconPapers    
Economics at your fingertips  
 

Multi-objective differential evolution optimization based on uniform decomposition for wind turbine blade design

Long Wang, Tongguang Wang, Jianghai Wu and Guoping Chen

Energy, 2017, vol. 120, issue C, 346-361

Abstract: Wind turbine blade design is a complicated multi-objective optimization task. In this article, a novel gradient-based multi-objective evolution algorithm based on both uniform decomposition and differential evolution is proposed for the design of wind turbine blades, to overcome unsatisfactory convergence performance and diversity of solutions usually existing in conventional evolution algorithms. A uniform decomposition mechanism is developed to achieve homogeneous discretion of the objective space for the purpose of controlling population distribution. Meanwhile, a differential evolution mechanism based on neighbourhood and gradient is developed to achieve exploration-exploitation balance and enhance optimization efficiency of the algorithm proposed. Two-objective, three-objective, and four-objective optimizations for the 1.5 MW wind turbine blade designs reveal that the proposed algorithm exhibits improved distribution, convergence, and converging efficiency compared to the conventional evolution algorithms such as NSGA-II. Additionally, the improvements are more significant with more objectives involved, demonstrating that the proposed algorithm can serve as a universal, high performance algorithm for the multi-objective optimization of wind turbine blade design.

Keywords: Wind turbine design; Multi-objective optimization; Differential evolution; Uniform decomposition (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216317170
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:120:y:2017:i:c:p:346-361

DOI: 10.1016/j.energy.2016.11.087

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:120:y:2017:i:c:p:346-361