Study on a piezo-disk energy harvester excited by rotary magnets
Junwu Kan,
Jiawei Fu,
Shuyun Wang,
Zhonghua Zhang,
Song Chen and
Can Yang
Energy, 2017, vol. 122, issue C, 62-69
Abstract:
A piezo-disk energy harvester excited by rotary magnets (PEHRM) was presented to harvest energy from rotating structures. The excitation force exerted on the piezo-disk is general periodic instead of harmonic. An analytical model for performance evaluation was established based on Fourier series as well as superposition principle and simulated to obtain the influence of system parameters on its response performance in terms of optimal rotary speeds and effective range of speeds. And then, several PEHRMs consisting of different piezo-disks were fabricated and tested. Research results show that, the wave-forms of amplitude-ratio/output-voltage in an excitation period are multimodal damped oscillations. The maximal amplitude-ratio/output-voltage is picked out and used to denote response performance. Under other parameters given, multiple optimal speeds of excited magnets can make the maximal amplitude-ratio/generated-voltage achieve the peak. With the increasing of piezo-disk stiffness denoted by radius and thickness, the optimal rotary speeds increase and the related voltage as well as voltage fluctuation decrease. These phenomena are helpful to enhance effective bandwidth and reliability. Besides, the optimal speeds, the relevant voltage and effective bandwidth also depend on the number of excitation magnets. The decreasing of exciting magnets is beneficial to enhancing the optimal speed, effective bandwidth and reliability.
Keywords: Piezoelectric; Rotary excitation; Energy harvesting; Non-harmonic excitation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217300592
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:122:y:2017:i:c:p:62-69
DOI: 10.1016/j.energy.2017.01.059
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().