EconPapers    
Economics at your fingertips  
 

Open-source energy planning tool with easy-to-parameterize components for the conception of polygeneration systems

Satya Gopisetty, Peter Treffinger and Leonhard Michael Reindl

Energy, 2017, vol. 126, issue C, 756-765

Abstract: Polygeneration systems are a key technology for the reduction of primary energy usage and emissions. High costs, lack of flexibility and effort for parameterization hinder the wide usage of modeling tools during their conceptual design. This paper describes how planning tools can be structured for the conceptual design phase where only little information is available to the planner. A library concept was developed using the principles of object-oriented modeling to address the flexibility issue. With respect to cost and expandability, the open-source modeling language Modelica was chosen. Furthermore, easy-to-parameterize component models were developed. In addition to the improved library concept and novel component models, an easy-to-adapt control concept is proposed. The component models were validated and the applicability of the library was demonstrated by means of an example. It was shown that the data usually obtained from spec sheets are sufficient to parameterize the models. In addition to this, the control concept was approved.

Keywords: Polygeneration; Energy systems model; Parameterization; Modelica (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217303717
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:126:y:2017:i:c:p:756-765

DOI: 10.1016/j.energy.2017.03.013

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:126:y:2017:i:c:p:756-765