Open-source energy planning tool with easy-to-parameterize components for the conception of polygeneration systems
Satya Gopisetty,
Peter Treffinger and
Leonhard Michael Reindl
Energy, 2017, vol. 126, issue C, 756-765
Abstract:
Polygeneration systems are a key technology for the reduction of primary energy usage and emissions. High costs, lack of flexibility and effort for parameterization hinder the wide usage of modeling tools during their conceptual design. This paper describes how planning tools can be structured for the conceptual design phase where only little information is available to the planner. A library concept was developed using the principles of object-oriented modeling to address the flexibility issue. With respect to cost and expandability, the open-source modeling language Modelica was chosen. Furthermore, easy-to-parameterize component models were developed. In addition to the improved library concept and novel component models, an easy-to-adapt control concept is proposed. The component models were validated and the applicability of the library was demonstrated by means of an example. It was shown that the data usually obtained from spec sheets are sufficient to parameterize the models. In addition to this, the control concept was approved.
Keywords: Polygeneration; Energy systems model; Parameterization; Modelica (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217303717
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:126:y:2017:i:c:p:756-765
DOI: 10.1016/j.energy.2017.03.013
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().