EconPapers    
Economics at your fingertips  
 

Kinetics of carbon dioxide gas hydrates with tetrabutylammonium bromide and functionalized multi-walled carbon nanotubes

Jean-Sébastien Renault-Crispo, Sylvain Coulombe and Phillip Servio

Energy, 2017, vol. 128, issue C, 414-420

Abstract: The effects of oxygen-functionalized multi-walled carbon nanotubes (MWCNTs) on tetrabutylammonium bromide (TBAB)-water-carbon dioxide semi-clathrate system was investigated. A system comprised of 9.5 ppmw MWCNTs and 40 wt % TBAB was chosen and the average gas consumption rate was calculated for different conditions. At 14 °C, the average gas consumption rate during growth decreased to a plateau with increasing induction time at 3.0 °C subcooling for systems with and without MWCNTs. The addition of MWCNTs increased the gas consumption rate during growth for induction times less than one hour but did not affect it at longer induction times. The maximum gas consumption enhancement from the added MWCNTs was 15%. Dissolution runs at equilibrium conditions indicated that the presence of MWCNTs improved the dissolution rate of carbon dioxide gas into the liquid by lowering the time constant τ by 5%. This suggests that the gas-liquid interfacial resistance of carbon dioxide gas mass transfer is not the limiting factor for hydrate growth in this TBAB semi-clathrate system with and without nanoparticles. At a lower subcooling of 1.5 °C, there was no significant difference in the gas consumption rates with the addition of MWCNTs, due to prolonged induction times.

Keywords: Gas hydrates; Growth rate; Kinetics; Tetrabutylammonium bromide; Multi-walled carbon nanotubes (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217306151
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:128:y:2017:i:c:p:414-420

DOI: 10.1016/j.energy.2017.04.046

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:128:y:2017:i:c:p:414-420