EconPapers    
Economics at your fingertips  
 

Experimental investigation of the thermal performance of a horizontal two-phase loop thermosiphon suitable for solar parabolic trough receivers operating at 200–400 °C

Yinfeng Wang, Beibei Lu, Haijun Chen, Hongtu Fan, Robert A. Taylor and Yuezhao Zhu

Energy, 2017, vol. 132, issue C, 289-304

Abstract: A horizontal two-phase loop thermosiphon (HLTS) has been developed as a potential receiver for parabolic trough collectors (PTCs). The design consists of an evaporator (which is horizontally arranged), a condenser, a riser, and a downcomer with a U-turn. This HLTS was designed to push to higher temperatures than previous HLTS studies (200–400 °C) by using Dowtherm A as the working fluid. An indoor experimental prototype was built to investigate its heat transfer performance. Three regimes: start-up, transition and steady operation were analyzed. A unique feature of this design, the U-turn compensation tube, was shown be helpful during the transition and steady operation regimes since it forms a liquid seal to avoid bidirectional flow in the loop. However, solidification of the working fluid in the U-turn section was found to adversely impact the start-up regime in the case of cold (e.g. frozen) initial conditions. The system was tested up to a heat flux value 11.22 kW/m2. The thermal resistance and the two-phase heat transfer coefficient were demonstrated to be considerably better than prior literature. Moreover, the present HLTS was shown to be theoretically limited to 85.6 kW/m2, thus demonstrating that this type of system can meet the needs of intermediate temperature PTC receivers.

Keywords: Horizontal two-phase loop thermosiphon; Intermediate temperature; Unidirectional flow; Experimental analysis; Thermal performance (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217307454
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:132:y:2017:i:c:p:289-304

DOI: 10.1016/j.energy.2017.05.007

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:132:y:2017:i:c:p:289-304