EconPapers    
Economics at your fingertips  
 

Experimental assessment of Maximum Power Point Tracking methods for photovoltaic systems

R. Boukenoui, M. Ghanes, J.-P. Barbot, R. Bradai, A. Mellit and H. Salhi

Energy, 2017, vol. 132, issue C, 324-340

Abstract: This paper presents different Maximum Power Point Tracking (MPPT) methods belonging to different classes as well as two overviews. The first was about the procedures used in the test and evaluation of MPPTs. The second is an overview of Fuzzy Logic Controller (FLC) MPPTs and improved MPPTs. Conventional MPPTs such as Perturb and Observe (P&O), Hill Climbing (HC) and Incremental Conductance (InCond); Improved MPPTs (are the modified versions of conventional MPPTs) such as Improved Incremental Conductance (Improved-InCond) and intelligent MPPTs such as FLC have been implemented and tested under two different levels of irradiance and temperature. A detailed description about the hardware and software implementation platforms (designed and built in our laboratory) is provided. Based on measured data, the MPPTs under consideration have been evaluated and compared in terms of different criteria, showing the advantages and disadvantages of each one. The comparison results showed that Improved-InCond gives a fast convergence to the MPP(Maximum Power Point). Whereas, FLC is able to adapt to the variation of irradiance and temperature levels. Thereby, a good performance is obtained wherein the MPP is reached in a short time as well as the power ripples are very small.

Keywords: Photovoltaic panel; Maximum Power Point Tracking; Efficiency; Performance assessment; dSPACE (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217308484
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:132:y:2017:i:c:p:324-340

DOI: 10.1016/j.energy.2017.05.087

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:132:y:2017:i:c:p:324-340