Experimental assessment of Maximum Power Point Tracking methods for photovoltaic systems
R. Boukenoui,
M. Ghanes,
J.-P. Barbot,
R. Bradai,
A. Mellit and
H. Salhi
Energy, 2017, vol. 132, issue C, 324-340
Abstract:
This paper presents different Maximum Power Point Tracking (MPPT) methods belonging to different classes as well as two overviews. The first was about the procedures used in the test and evaluation of MPPTs. The second is an overview of Fuzzy Logic Controller (FLC) MPPTs and improved MPPTs. Conventional MPPTs such as Perturb and Observe (P&O), Hill Climbing (HC) and Incremental Conductance (InCond); Improved MPPTs (are the modified versions of conventional MPPTs) such as Improved Incremental Conductance (Improved-InCond) and intelligent MPPTs such as FLC have been implemented and tested under two different levels of irradiance and temperature. A detailed description about the hardware and software implementation platforms (designed and built in our laboratory) is provided. Based on measured data, the MPPTs under consideration have been evaluated and compared in terms of different criteria, showing the advantages and disadvantages of each one. The comparison results showed that Improved-InCond gives a fast convergence to the MPP(Maximum Power Point). Whereas, FLC is able to adapt to the variation of irradiance and temperature levels. Thereby, a good performance is obtained wherein the MPP is reached in a short time as well as the power ripples are very small.
Keywords: Photovoltaic panel; Maximum Power Point Tracking; Efficiency; Performance assessment; dSPACE (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217308484
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:132:y:2017:i:c:p:324-340
DOI: 10.1016/j.energy.2017.05.087
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().