A cost-emission framework for hub energy system under demand response program
Majid Majidi,
Sayyad Nojavan and
Kazem Zare
Energy, 2017, vol. 134, issue C, 157-166
Abstract:
Based on the kind of fuel consumed by generation unit, each generation system has different generation costs and emits various types of greenhouse gases like CO2, SO2 and NO2 to the atmosphere. So, nowadays in the power system scheduling, emission issue has been turned to be an important factor. In this paper, in addition to economic performance, emission problem of energy hub system has been also investigated. Therefore, a multi-objective optimization model has been proposed for cost-environmental operation of energy hub system in the presence of demand response program (DRP). Weighted sum approach has been employed to solve the proposed multi-objective model and fuzzy satisfying technique has been implemented to select the best compromise solution. Implementation of load management programs presented by DRP shifts some percentage of load from peak periods to off-peak periods to flatten load curve which leads to reduction of total cost and emission of energy hub system. A mixed-integer linear programming has been used to model the cost-environmental performance problem of energy hub system and then, GAMS optimization software has been utilized to solve it. A sample energy hub system has been studied and the obtained results have been compared to validate the effectiveness of proposed techniques.
Keywords: Multi-objective optimization model; Multi-carrier energy system; Combined heat and power; Weighted sum approach; Fuzzy satisfying techniques; Demand response program (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217309957
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:134:y:2017:i:c:p:157-166
DOI: 10.1016/j.energy.2017.06.003
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().