EconPapers    
Economics at your fingertips  
 

A comparison of micro gas turbine operation modes for optimal efficiency based on a nonlinear model

Jiandong Duan, Shaogui Fan, Quntao An, Li Sun and Guanglin Wang

Energy, 2017, vol. 134, issue C, 400-411

Abstract: The novel contribution of this paper is that Micro gas turbine (MGT) operation modes for optimal efficiency are compared based on a nonlinear model, and the variable-speed control is proposed for optimal efficiency. The nonlinear mathematical MGT model is established based on thermodynamic analysis, which can completely reflect the MGT operational characteristics. When the air flow rate is fixed, the rotational speed of the rotor greatly influences the MGT efficiency. At a certain value of speed, the system efficiency reaches its maximum. On this basis, the efficiency of four MGT operation modes are studied: 1. constant speed of a simple cycle, 2. variable speed of a simple cycle, 3. constant speed of a regenerative cycle, and 4. variable speed of a regenerative cycle. In this paper, the relationship between optimal efficiency and the corresponding rotational speed of different output powers formulated using a numerical calculation method is studied. The optimal efficiency formula can be used to generate the given speed of the MGT speed controller for optimally efficient operation. The results show that the variable-speed operation mode of the regenerative cycle exhibited the highest system efficiency and has an evident efficiency optimization effect under a small load.

Keywords: Micro gas turbine; Optimal efficiency; Efficiency analysis; Nonlinear model (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217310290
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:134:y:2017:i:c:p:400-411

DOI: 10.1016/j.energy.2017.06.035

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:134:y:2017:i:c:p:400-411