Comparative study of dynamic wireless charging of electric vehicles in motorway, highway and urban stretches
Carlos A. García-Vázquez,
Francisco Llorens-Iborra,
Luis M. Fernández-Ramírez,
Higinio Sánchez-Sainz and
Francisco Jurado
Energy, 2017, vol. 137, issue C, 42-57
Abstract:
Electric vehicles are the most promising sustainable transport technology for solving problems linked to the internal combustion engine vehicles. Wireless charging reduce the main problems associated with electric vehicles, driving range, charging time and size and cost of the battery. Inductive power transfer is the most promising technology for dynamic wireless charging of electric vehicles, which can be used to supply the motors and charge the battery while moving. This paper presents a comparative study of a dynamic wireless power transfer system for charging electric vehicles driving on three stretches of traffic road (motorway, highway and urban stretch) in Cádiz (Spain). The study analyses the electricity consumption demanded by the dynamic wireless power transfer system and the battery state-of-charge of the electric vehicles that travel the stretch to evaluate the increase of autonomy, the length of the stretch or speed of the vehicle for achieving a specific increase of state-of-charge. The results show a great dependence on stretch of road, with large fluctuations in the urban stretch and more stability in the highway and motorway. This study could help to design stretches of roads with dynamic wireless power transfer and to quantify the power and energy demanded by the system.
Keywords: Electric vehicle; Wireless power transfer; Battery; Dynamic charging (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217311891
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:137:y:2017:i:c:p:42-57
DOI: 10.1016/j.energy.2017.07.016
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().