Energy use implications of different design strategies for multi-storey residential buildings under future climates
Uniben Yao Ayikoe Tettey,
Ambrose Dodoo and
Leif Gustavsson
Energy, 2017, vol. 138, issue C, 846-860
Abstract:
The effects of climate change on the final and primary energy use of versions of a multi-storey residential building have been analysed. The building versions are designed to the Swedish building code (BBR 2015) and passive house criteria (Passive 2012) with different design and overheating control strategies under different climate scenarios. Future climate datasets are based on Representative Concentration Pathway scenarios for 2050–2059 and 2090–2099. The analysis showed that strategies giving the lowest space heating and cooling demands for the Passive 2012 building version remained the same under all climate scenarios. In contrast, strategies giving the lowest space heating and cooling demands for the BBR 2015 version varied, as cooling demand became more significant under future climate scenarios. Cooling demand was more dominant than heating for the Passive 2012 building version under future climate scenarios. Household equipment and technical installations based on best available technology gave the biggest reduction in total primary energy use among considered strategies. Overall, annual total operation primary energy decreased by 37–54% for the building versions when all strategies are implemented under the considered climate scenarios. This study shows that appropriate design strategies could result in significant primary energy savings for low-energy buildings under changing climates.
Keywords: Climate change; Representative concentration pathways (RCPs); Design strategies and overheating control measures; Space heating and cooling; Primary energy; Residential building (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217313063
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:138:y:2017:i:c:p:846-860
DOI: 10.1016/j.energy.2017.07.123
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().