EconPapers    
Economics at your fingertips  
 

An efficient linear model for optimal day ahead scheduling of CHP units in active distribution networks considering load commitment programs

Mohsen Kia, Mehrdad Setayesh Nazar, Mohammad Sadegh Sepasian, Alireza Heidari and Pierluigi Siano

Energy, 2017, vol. 139, issue C, 798-817

Abstract: The Optimal day-ahead Scheduling of Combined Heat and Power (OSCHP) units is a crucial problem in the energy management of Active Distribution Networks (ADNs), especially in the presence of Electrical and Thermal Energy Storages considering Load Commitment (LC) programs. The ADN operator may use Combined Heat and Power (CHP) units to supply its Industrial Customers (ICs) and can transact electricity with the upstream wholesale electricity market. The OSCHP problem is a Mixed Integer Non Linear Programming (MINLP) problem with many variables and constraints. However, the optimal operation of CHP units, Electrical and Thermal Energy Storages considering LC programs and contingency scenarios, may highly complicate this problem. In this paper, linearization techniques are adopted to linearize equations and a two-stage Stochastic Mixed-Integer Linear Programming (SMILP) model is utilized to solve the problem. The first stage models the behavior of operation parameters and minimizes the operation costs, verifies the feasibility of the ICs' requested power exchanges and the second stage considers LC programs and the system's stochastic contingency scenarios. The effectiveness of the proposed algorithm has been demonstrated considering 18-bus, 33-bus and 123-bus IEEE test systems.

Keywords: Active distribution network; Combined heat and power; Electrical and thermal energy storages; Inter-zonal power exchange; Load commitment program; Optimization (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421731383X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:139:y:2017:i:c:p:798-817

DOI: 10.1016/j.energy.2017.08.008

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:139:y:2017:i:c:p:798-817