Engine blow-by with oxygenated fuels: A comparative study into cold and hot start operation
Brett J. Mitchell,
Ali Zare,
Timothy A. Bodisco,
Md Nurun Nabi,
Farhad M. Hossain,
Zoran D. Ristovski and
Richard J. Brown
Energy, 2017, vol. 140, issue P1, 612-624
Abstract:
T{(NPI), 1999 #117}his research compares the effects of oxygenated fuels on engine blow-by during engine cold and hot start operation using a common rail, turbocharged diesel engine. Diesel, waste cooking biodiesel and a highly oxygenated additive, triacetin, were used to make a range of fuel oxygen contents (0–13.57%). This study investigated engine blow-by and its correlation with indicated, brake and friction power; and blow-by normalised by different parameters. Result showed that neat diesel produces higher blow-by during cold start than the oxygenated fuels. There was a strong correlation between blow-by and indicated power, and the fuel calorific value was identified as a leading factor. To further analyse the results, this study normalised the engine blow-by by power to reveal the other influences on engine blow-by. The result verified the strong influence of power. This study also furthered the analysis by normalising the blow-by data by exhaust flow rate, intake air flow rate and injected fuel flow rate. It was discovered that oxygenated fuels perform better between hot and cold start, when compared to diesel. The blow-by inhibited properties of oxygenated fuels, such as higher lubricity and viscosity may be the cause for better performance of oxygenated fuels during cold start.
Keywords: Diesel engine; Blow-by; Cold start; Biodiesel; Triacetin; Waste cooking biodiesel (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217314780
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:140:y:2017:i:p1:p:612-624
DOI: 10.1016/j.energy.2017.08.115
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().