Performance improvement of a direct carbon solid oxide fuel cell system by combining with a Stirling cycle
Haoran Xu,
Bin Chen,
Peng Tan,
Houcheng Zhang,
Jinliang Yuan,
Jiang Liu and
Meng Ni
Energy, 2017, vol. 140, issue P1, 979-987
Abstract:
An external heat source and a Stirling cycle are proposed for performance improvement of a direct carbon solid oxide fuel cell (DC-SOFC) system. The amount of the heat released in the DC-SOFC is determined based on a previously validated 2D tubular DC-SOFC model, in which the electrochemical reaction, chemical reactions, ion/electronic charge transport, mass transport and momentum transport are fully considered. Numerical calculations show that the overall heat released in the cell may be smaller than, equal to or larger than the heat required by the internal Boudouard reaction, and accordingly, three different operating modes of the system are given. The analytical expressions for the equivalent power output and efficiency for the DC-SOFC, Stirling cycle and the hybrid system are specified under different operating conditions. The results show that the power density and efficiency of the proposed system allow 4000 W m−2 and 30% larger than that of the stand-alone DC-SOFC at 30000 A m−2, respectively. Parametric studies also show that a higher operating temperature and a smaller distance between carbon layer and anode will increase the overall power density and efficiency of the proposed system.
Keywords: Solid oxide fuel cell; Solid carbon; Boudouard reaction; Stirling cycle; Heat management (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421731558X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:140:y:2017:i:p1:p:979-987
DOI: 10.1016/j.energy.2017.09.036
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().