EconPapers    
Economics at your fingertips  
 

Evaluating combustion, performance and emission characteristics of Millettia pinnata and Croton megalocarpus biodiesel blends in a diesel engine

A.M. Ruhul, M.A. Kalam, H.H. Masjuki, S.A. Shahir, Abdullah Alabdulkarem, Y.H. Teoh, H.G. How and S.S. Reham

Energy, 2017, vol. 141, issue C, 2362-2376

Abstract: Biodiesel from non-edible vegetable oil is considered as a monetarily doable source among the conceivable sources. It can be used as a replacement of the fossil diesel without any modification of engine design. In this study, “Millettia pinnata" (MP) which is known as Karanja and "Croton megalocarpus" (CM), non-edible biodiesel feedstock sources used for biodiesel production. 20% (v/v) of each M. pinnata (MP20) and C. megalocarpus (CM20) and their combined blends were evaluated in a single-cylinder diesel engine with variable load and speed condition in the context of performance, combustion and emission characteristics. For speed test condition, MP20 and CM20 reduced the brake power by 3.70% and 0.53%, brake thermal efficiency by 3.36% and 1.41%, carbon dioxide emission by 18.46% and 6.20%, hydrocarbon emission by 9.00% and 2.89% respectively compared to neat diesel but increased the brake specific fuel consumption by 7.63% and 4.64%, NOX emission by 17.15% and 8.16%, respectively. Beyond diesel, a mixture of 5% MP and 15% CM biodiesel with 80% diesel (MP5CM15) provides higher in-cylinder peak pressure (77.44 bar), better heat release rate (39.26 J/°CA), shorter ignition delay and combustion duration. Thus MP5CM15 found to be a substitutable alternative to neat diesel except for NOX emission.

Keywords: Combustion; Performance; Emission; Croton; Karanja; Transesterification; Biodiesel (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217319540
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:141:y:2017:i:c:p:2362-2376

DOI: 10.1016/j.energy.2017.11.096

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:2362-2376