Mutual information for evaluating renewable power penetration impacts in a distributed generation system
Yu Luo,
Yixiang Shi,
Yi Zheng,
Zhongxue Gang and
Ningsheng Cai
Energy, 2017, vol. 141, issue C, 290-303
Abstract:
Renewable energy (RE) is regarded as the main part of the primary energy in the forthcoming “energy internet”. However, the intermittence and variability of renewable energy limit its present penetration. To study the effect of the renewable energy penetration on power supply and demand, a dynamic distributed multi-energy generation system combining RE, natural gas (NG) and energy storage was built based on the semi-physical model library. The model library consisted of four key links of a distributed generation system: a generation link, storage link, recycle link and user-load link. Simulation indicated that the responses of a reversible solid oxide fuel cell (RSOC) and Li-ion battery were faster than that of a gas internal combustion engine (GICE). Furthermore, a novel indicator based on the mutual information was applied in a distributed generation system coupling RE, NG and energy storage. The results showed that the indicator was applicable for evaluating power balance degree and device capacity selection. Based on the indicator, it was found that the power balance degree decreased with increasing wind power penetration. Co-storage of RSOC and Li-ion was found to effectively alleviate the power unbalance caused by wind power and save the energy storage capacity in the meantime.
Keywords: Renewable energy penetration; Semi-physical dynamic simulation platform; Distributed power system; Mutual information; Reversible solid oxide fuel cell (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217315542
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:141:y:2017:i:c:p:290-303
DOI: 10.1016/j.energy.2017.09.033
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().