EconPapers    
Economics at your fingertips  
 

Towards realistically predicting the power outputs of wave energy converters: Nonlinear simulation

Yingguang Wang and Lifu Wang

Energy, 2018, vol. 144, issue C, 120-128

Abstract: This paper focuses on realistically predicting the power outputs of wave energy converters operating in shallow water nonlinear waves. An oscillating surge wave energy converter (OSWEC) is utilized as a specific calculation example, and the generated power of the OSWEC has been predicted by using a new method (a nonlinear simulation method) that incorporates a second order random wave model into a nonlinear dynamic filter. It is demonstrated that the second order random wave model in this article can be utilized to generate irregular waves with realistic crest-trough asymmetries, and when used in combination with the nonlinear filter can produce more accurate power output predictions. The research findings demonstrate that the new nonlinear simulation method in this article can be utilized as a robust tool for ocean engineers in their design, analysis and optimization of wave energy converters.

Keywords: Power output; Wave energy converters; Nonlinear simulation; Crest-trough asymmetries; Nonlinear dynamic filter (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421732042X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:144:y:2018:i:c:p:120-128

DOI: 10.1016/j.energy.2017.12.023

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:144:y:2018:i:c:p:120-128