Investigation of operation strategy of combined cooling, heating and power(CCHP) system based on advanced adiabatic compressed air energy storage
Zhonghe Han and
Senchuang Guo
Energy, 2018, vol. 160, issue C, 290-308
Abstract:
Combined cooling, heating and power(CCHP) system can meet the diversified demand of users. To investigate the performance of CCHP system based on advanced adiabatic compressed air energy storage(AA-CAES) under different operation strategies, four operation scenarios of compressor-expander, which are respectively constant-constant, constant-sliding, sliding-constant, and sliding-sliding, are proposed in this paper. By employing the numerical simulation method, system performance of four scenarios is compared via energy analysis and exergy analysis. Meanwhile, a parametric analysis is conducted to evaluate the influence of key parameters on system performance. The results show that cycle efficiency, thermal efficiency and exergy efficiency of sliding-sliding scenario are all the highest, 48.31%, 91.04% and 56.48%, respectively. And exergy density of constant-sliding scenario is the biggest, 7.69 × 106 J m−3, when design parameters of system are the same. In addition, second heat exchanger makes the largest contribution to the overall exergy destruction of system. For the four operation scenarios, with heat exchanger effectiveness increasing, cycle efficiencies exist optimal values, whereas thermal efficiencies, exergy efficiencies and exergy densities gradually augment. The influence of ambient temperature on different performance indexes is different. The increase of ambient pressure has negative effect on exergy densities, but it has positive effect on other performance indexes.
Keywords: Advanced adiabatic compressed air energy storage; Combined cooling; Heating and power; Operation scenario; Operation parameter; Thermodynamic analyses (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218313288
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:160:y:2018:i:c:p:290-308
DOI: 10.1016/j.energy.2018.07.033
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().