Experimental investigations of Alum/expanded graphite composite phase change material for thermal energy storage and its compatibility with metals
Suling Zhang,
Wei Wu and
Shuangfeng Wang
Energy, 2018, vol. 161, issue C, 508-516
Abstract:
A novel composite phase change material(CPCM) were prepared with Aluminum potassium sulfate dodecahydrate(Alum, KAl(SO4)2·12H2O) as PCM and expanded graphite(EG) as nucleating agent and porous matrix for thermal conductivity enhancing. The detailed thermo-physical properties and thermal energy storage performance were studied. The DSC revealed that the melting temperature and latent heat of fusion of Alum/EG CPCM were 87.92 °C and 214.9J/g, respectively. The thermal conductivity of Alum/EG CPCM was improved from 0.497W·m−1·K−1 to 5.875W·m−1·K−1 due to the addition of EG, which can also be confirmed by the infrared thermal imager during charging/discharging process. The Alum/EG CPCM exhibited prominent chemical stability and thermal reliability before and after 500 thermal cycle tests. Furthermore, the corrosion of three metals and one metal alloy were studied and the gravimetric analysis and the results of element composition of four samples exhibited that the brass was the suitable materials for the container for long-term used while stainless steel 304L and aluminum were severely corroded. The results demonstrated that Alum/EG CPCM was a prospective candidate for thermal energy storage and accelerated the research on the Alum/EG heat storage system.
Keywords: Expanded graphite; Aluminum potassium sulfate dodecahydrate; Thermal energy storage; Thermal properties; Corrosion (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218313720
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:161:y:2018:i:c:p:508-516
DOI: 10.1016/j.energy.2018.07.075
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().