EconPapers    
Economics at your fingertips  
 

Safety assessment of hydro-generating units using experiments and grey-entropy correlation analysis

Huanhuan Li, Diyi Chen, Ehsan Arzaghi, Rouzbeh Abbassi, Beibei Xu, Edoardo Patelli and Silvia Tolo

Energy, 2018, vol. 165, issue PA, 222-234

Abstract: This paper focuses on the safety analysis of a nonlinear hydro-generating unit (HGU) running under different loads. For this purpose, a dynamic balance experiment implemented on an existing hydropower station in China is considered, to qualitatively investigate the stability of the system and to obtain the necessary indices for safety assessment. The experimental data are collected from four on-load units operating at different working heads including 431 m, 434 m, 437 m, and 440 m. A quantitative analysis on the safety performance of the four units was carried out by employing an integration of entropy weights method with grey correlation analysis. This assisted in obtaining the safety degree of each unit, providing the risk prompt to the operation of nonlinear hydro-generating units. The results confirm that unit 4 has the highest level of safety while unit 3 operates with the lowest safety condition. This provides the optimal operational schedule of HGUs to cope with the fluctuations of electricity demand in the studied station. The proposed methodology in this paper is not only applicable to the HGUs in the studied station but could also be adopted to assess the safety degree of any hydropower facility.

Keywords: Hydro-generating unit; Dynamic balance experiment; Safety analysis; Grey-entropy correlation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218318437
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:165:y:2018:i:pa:p:222-234

DOI: 10.1016/j.energy.2018.09.079

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:165:y:2018:i:pa:p:222-234