EconPapers    
Economics at your fingertips  
 

Reverse Electrodialysis for energy production from natural river water and seawater

Ahmet H. Avci, Ramato A. Tufa, Enrica Fontananova, Gianluca Di Profio and Efrem Curcio

Energy, 2018, vol. 165, issue PA, 512-521

Abstract: The effectiveness of Salinity Gradient Power - Reverse Electrodialysis (SGP-RE) in real practice is still not clearly defined due to the lack of specific studies in literature, being investigations in large part limited to pure NaCl solutions or aqueous mixtures of two salts. In this work, we experimentally assessed the impact of natural feed streams (collected from Licetto river and Tyrrenian sea in Amantea - Italy) in terms of Open Circuit Voltage (OCV) and power density (Pd) measured on a lab-scale SGP-RE stack prototype; results have been compared to those obtained when using NaCl solutions having equivalent ionic strength. Highest OCV (3.68 V and 4.09 V) and Pd values (0.46 and 1.41 W∙m−2) were observed at temperature of 60 °C for real and synthetic feeds, respectively.

Keywords: Reverse Electrodialysis; Salinity gradient power; Natural feeds; Electrochemical impedance spectroscopy; Uphill transport (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218318759
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:165:y:2018:i:pa:p:512-521

DOI: 10.1016/j.energy.2018.09.111

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:165:y:2018:i:pa:p:512-521