A modified H-bridge voltage source converter with Fault Ride Capability
Venugopal Reddy Bodha,
A. Srujana and
O. Chandrashekar
Energy, 2018, vol. 165, issue PB, 1380-1391
Abstract:
Power conversion systems are used in wind turbine to improve the quality of the generated power without harmonic distortion which is utilized for transmission through grid intended for variable wind speed. However due to the variations of wind leads to evolving of high voltage and low voltage which leads to inconsistency in feeding power to grid. Inorder to provide quality constant harmonic distortionless power to grid from wind turbine an efficient Magnet Synchronous Generator (MSG) connected to the Modified H-bridge series connected Voltage Source Convertor (MHSVSC) is framed out. This converter can draw the input voltage with low distortion and thereby provides the output voltage with low harmonic distortion by LCL filter. Also, to meet the inconsistency in voltage supply to the grid, a fault ride requirement capability based on the M-controller is provided for the dc-link voltage to manage the voltage drop and over voltage in the grid. Thus, the power, which is to be supplied to the grid, is done cost efficiently, consistently, reduced harmonic distortion and errors by utilizing the MHSVSC with Fault Ride Capability. The proposed methodology implemented in the MATLAB platform.
Keywords: Wind energy conversion system (WECS); Magnet synchronous generator (MSG); M-controller; Wind turbines (WT); Back to back converter (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218320644
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:165:y:2018:i:pb:p:1380-1391
DOI: 10.1016/j.energy.2018.10.074
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().