Production of biochars from textile fibres through torrefaction and their characterisation
Alper Hanoğlu,
Ahmet Çay and
Jale Yanık
Energy, 2019, vol. 166, issue C, 664-673
Abstract:
In this study, the utilization of textile fibres as energy feedstock in the form of biochar was investigated depending on the fibre type. The biochars were produced from waste natural and synthetic fibres and its blends. For this purpose, different types of textile fibres (cotton, viscose, polyester, acrylic) and their blends (cotton/polyester, acrylic/wool, acrylic/polyester, acrylic/viscose) were torrefied at temperatures between 300 and 400 °C. The effects of torrefaction temperature and fibre type on biochar yield and biochar properties (fuel properties, morphological and structural properties and combustion characteristics) were investigated. The results showed that the temperature had a significant effect on biochar yield whereas the fibre type was the only significant factor on energy densification ratio and biochar properties. The torrefaction of tested fibres and blends resulted in an energy-intensive solid fuel, having a negligible amount of ash and sulphur. Although torrefied acrylic based textile fibres had similar H/C and O/C ratios to bituminous coal, it was concluded that high nitrogen contents will limit their usage as fuel. Overally, this study showed that torrefaction of cotton and cotton/polyester textile wastes is a promising process for the production of a solid fuel, which can be used as a substitute fuel in coal/waste co-firing systems.
Keywords: Textile fibre; Biochar; Torrefaction; Energy feedstock (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218321133
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:166:y:2019:i:c:p:664-673
DOI: 10.1016/j.energy.2018.10.123
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().