Effects of thermal conductivity and density on phase change materials-based thermal energy storage systems
Benli Peng,
Guanghan Huang,
Pengtao Wang,
Wenming Li,
Wei Chang,
Jiaxuan Ma and
Chen Li
Energy, 2019, vol. 172, issue C, 580-591
Abstract:
This research systematically studies the impacts of thermal conductivity and density of phase change materials (PCM) on the characteristics of PCM-based thermal energy storage systems (TES). We show that the eutectic PCM, owing to its high thermal conductivity, has more stable temperature evolution than that of paraffin wax during both heat charging and discharging processes. The paraffin wax has an enhanced charging rate, when the heat is applied at the bottom, as a result of convection driven by the obvious temperature-dependent density of liquid paraffin wax. The convection and orientation effects are significant in the charging process of paraffin wax, but insignificant for eutectic PCM, which are further confirmed by visualization and numerical studies. Specifically, a gap forms between the covered plate wall and the solid paraffin wax after discharging process. This gap significantly inhibits the charging process in a heat charging and discharging cycle. We also observed that the charging efficiency of the paraffin wax is substantially reduced by its high contact thermal resistance, which is 2–3 orders of magnitude higher than that of eutectic PCM. This shows that rapid thermal energy charging/discharging rates, a highly desirable stable working temperature, and orientation-insensitivity of TES can be achieved using PCM with a high thermal conductivity and a temperature-independent density.
Keywords: Phase change materials; Charging/discharging performance; Thermal conductivity effect; Density and orientation effect (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421930163X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:172:y:2019:i:c:p:580-591
DOI: 10.1016/j.energy.2019.01.147
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().