Modeling for chaotic time series based on linear and nonlinear framework: Application to wind speed forecasting
Ping Jiang,
Biao Wang,
Hongmin Li and
Haiyan Lu
Energy, 2019, vol. 173, issue C, 468-482
Abstract:
Wind-speed forecasting plays a crucial part in improving the operational efficiency of wind power generation. However, accurate forecasts are difficult owing to the uncertainty of the wind speed. Although numerous investigations of wind-speed forecasting have been performed, many of the previous studies used wind-speed data directly to make forecasts, which were rarely based on the structural characteristics of the data. Therefore, in this study, a hybrid linear-nonlinear modeling method based on the chaos theory was successfully employed to capture the linear and nonlinear factors hidden in chaotic time series. Before the forecast, the noise in the data was removed using a decomposition algorithm. Then, through the phase-space reconstruction, the one-dimensional time series were extended to the multi-dimensional space to determine the utilization form of the data. Finally, Holt's exponential smoothing based on the firefly optimization algorithm and support vector regression were combined to predict the wind speed. The experimental results show that the proposed model is not only better than the comparison models but also has great application potential in the wind power generation system.
Keywords: Wind speed; Data characteristics; Linear and nonlinear; Chaotic time series; Phase space reconstruction (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219302750
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:173:y:2019:i:c:p:468-482
DOI: 10.1016/j.energy.2019.02.080
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().