Effect of nitrogen doping on the electrochemical performance of resorcinol-formaldehyde based carbon aerogels as electrode material for supercapacitor applications
Mojtaba Mirzaeian,
Qaisar Abbas,
Des Gibson and
Michal Mazur
Energy, 2019, vol. 173, issue C, 809-819
Abstract:
Nitrogen doped resorcinol/formaldehyde carbon aerogels with controlled nitrogen content are synthesized by controlling the resorcinol/melamine molar ratio (R/M) during the synthesis of aerogel precursors. The carbons were used as electrode materials in an electrochemical capacitor using 6 M KOH solution as electrolyte. All samples exhibited amorphous structure with low degree of graphitization. The maximum specific capacitance of 208 Fg-1 was observed after doping of the carbon with nitrogen at R/M = 80. Drop in solution and charge transfer resistances from 0.57Ω to 0.15Ω and 0.05Ω–0.04Ω was also observed respectively, with the drop in contact angles from 123° to 103° for the carbon doped with nitrogen at R/M = 80. BET results showed that the pore volume and surface area of carbon increase after N-doping, with a BET surface area of 841 m2 g−1 at R/M = 80. This R/M ratio is an optimum ratio at which incorporation of nitrogen into the carbon matrix improves the capacitive performance of cell as a result of improved porosity/wettability/conductivity/active sites of the electrode. Doping at higher nitrogen concentrations (R/M < 80) decreased the specific capacitance of the cell significantly due to decreased conductivity of carbon and suppression of the hopping rate of dopant.
Keywords: Nitrogen doped carbon aerogels; Porous structure; Functional groups; Electrode/electrolyte interface; Electrochemical performance (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219303068
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:173:y:2019:i:c:p:809-819
DOI: 10.1016/j.energy.2019.02.108
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).