Hydropower reservoir reoperation to adapt to large-scale photovoltaic power generation
Bo Ming,
Pan Liu,
Shenglian Guo,
Lei Cheng and
Jingwen Zhang
Energy, 2019, vol. 179, issue C, 268-279
Abstract:
Integrating dispatchable hydropower with nondispatchable photovoltaic (PV) power is a promising way to enhance resource use efficiency. However, hybrid generation of these energy sources may exert greater pressure on the integrated water resources management, calling for reservoir reoperation. To address this issue, we propose a procedure to derive adaptive operating rules for a large hydro—PV hybrid power plant consisting of following steps: (1) establish a short-term simulation model to estimate the PV curtailment rate arising from specified long-term hydropower output, in which the relationships are represented as PV energy-loss functions to bridge long- and short-term operations; (2) design six operating rules that incorporate the PV energy-loss functions to simulate the system's long-term operation; and (3) develop a multi-objective optimization model to identify the most effective operating rules. A case study was carried out for China's Longyangxia hydro—PV hybrid power plant. Results showed that, compared with traditional operation, the average annual energy production and power supply reliability of the optimal rule curves increased to 7.3 billion kWh (4.3%) and 90% (47.5%), respectively, while the water shortage index decreased to 114 (6.6%). The derived operating rules could achieve good balance between PV integration and water management.
Keywords: Hybrid energy system; Operating rules; Photovoltaic power; Hydropower; Water resources management; Multi-objective optimization (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (43)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219308497
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:179:y:2019:i:c:p:268-279
DOI: 10.1016/j.energy.2019.04.209
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().