Use of encapsulated phase change materials in lightweight building walls for annual thermal regulation
Xiaoqin Sun,
Jovana Jovanovic,
Yuan Zhang,
Siyuan Fan,
Youhong Chu,
Yajing Mo and
Shuguang Liao
Energy, 2019, vol. 180, issue C, 858-872
Abstract:
The use of phase change materials (PCMs) in building envelopes is a promising energy efficiency technology. Nevertheless, it is difficult to design a PCM wall for annual thermal regulation since the outdoor environment varies significantly in different seasons. To figure out a design strategy for the PCM walls, three wall specimens with different assemblies were designed and developed to test the thermal performance in summer and winter. A mathematical model was established and validated using experimental data. The thermal performance of the proposed walls was tested, simulated and evaluated using internal surface temperature, thermal inertia and daily heat fluxes compared with a reference wall. The internal surface temperature amplitude was reduced by maximum of 0.73 °C by 21.4% during summer and 0.88 °C by 23.9% during winter. The thermal inertial which represents the ability of the wall to resist the change in temperature was enhanced from 1.24 to 2.0 by 60.3%. The annual average energy savings by using PCMs were 17.7%, 20.2% and 23.1% when the PCM spheres were placed at the first, second, and third layer, respectively. The optimal position of PCM spheres was the third layer for summer, fourth layer for winter, and third layer for annual application.
Keywords: Building wall; Phase change material; Temperature amplitude; Heat flux reduction; Thermal inertia (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219309946
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:180:y:2019:i:c:p:858-872
DOI: 10.1016/j.energy.2019.05.112
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().