Demand side management in district heating systems by innovative control
Elisa Guelpa and
Ludovica Marincioni
Energy, 2019, vol. 188, issue C
Abstract:
Demand side management can be successfully applied to district heating systems for shaving thermal peaks. Peak shaving allows increasing share of convenient and less pollutant sources (waste heat, cogeneration and renewables) and enabling further building connections without modifying the pipelines. Demand side management in district heating is mainly done by shifting the load. Another interesting option consists in adjusting the substation regulation strategy; this approach not affects the heating schedule. This paper aims at analysing the opportunities for peak shaving using an innovative regulation strategy in the district heating substations, by controlling with a building model the effects on the indoor comfort conditions. The regulation strategy adopted is the Differential of Return Temperatures (DRT), that includes a constraint on the cold outlet section of the heat exchanger. This paper shows that thermal peak of building demand reducing on average of 15% by using the DRT regulation. Considering an entire distribution network, taking into account its thermal dynamics, the total peak request can be shaved of about 24%. Setting of the DRT regulation strategy has been shown being crucial for achieving satisfying peak shaving without compromising the indoor comfort conditions.
Keywords: Thermal grid; Smart energy system; Demand response; Thermal networks; Control strategy; Peak shaving (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219317311
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:188:y:2019:i:c:s0360544219317311
DOI: 10.1016/j.energy.2019.116037
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().