Machine learning for predicting thermodynamic properties of pure fluids and their mixtures
Yuanbin Liu,
Weixiang Hong and
Bingyang Cao
Energy, 2019, vol. 188, issue C
Abstract:
Establishing a reliable equation of state for largely non-ideal or multi-component liquid systems is challenging because the complex effects of molecular configurations and/or interactions on the thermodynamic properties must generally be taken into account. In this regard, machine learning holds great potential for directly learning the thermodynamic mappings from existing data, thereby bypassing the use of equations of state. The present study outlines a general machine learning framework based on high-efficiency support vector regression for predicting the thermodynamic properties of pure fluids and their mixtures. The proposed framework is adopted in conjunction with training data obtained from a high-fidelity database to successfully predict the thermodynamic properties of three common pure fluids. The predictions demonstrate extremely low mean square errors. Moreover, little loss in the prediction accuracy is obtained for ternary mixtures of the pure fluids at the cost of a modest increase in the volume of training data provided by state-of-the-art molecular dynamics simulations. Our results demonstrate the promising potential of machine learning for building accurate thermodynamic mappings of pure fluids and their mixtures. The proposed methodology may pave the way in the future for the rapid exploration of novel or complex systems with potentially exceptional thermodynamic properties.
Keywords: Thermodynamic properties; Machine learning; Support vector regression; Mixtures; Molecular dynamics simulation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219317864
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:188:y:2019:i:c:s0360544219317864
DOI: 10.1016/j.energy.2019.116091
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().