Predicting energy consumption: A multiple decomposition-ensemble approach
Cheng Zhou and
Xiyang Chen
Energy, 2019, vol. 189, issue C
Abstract:
Reliable energy consumption prediction plays a vital role in formulating government's energy policies. In this study, a novel multiple decomposition-ensemble method based on error compensation is proposed to stably predict energy consumption. Firstly, trend decomposition is used to decompose the energy consumption into trend-subseries and error-subseries. In view of error compensation is a feasible approach for improving the prediction accuracy, the error-subseries that mentioned above are further divided into one low-frequency approximation error-subseries and several high-frequency detailed error-subseries by wavelet transform. Depending on their different dynamic changing characteristics, this study uses a Linear Regression Model to predict the trend-subseries, employs a Triple Exponential Smoothing Model to estimate the low-frequency approximation error-subseries, and uses an Auto Regression model to find the high-frequency detailed error-subseries. Finally, the overall energy consumption is the summation of these subseries predictions. Using the energy consumption data from China in 2007–2016, empirical study is carried out. The proposed multiple decomposition-ensemble method based on error compensation achieves the highest performance, which is compared with other six models (three single models, two traditional decomposition-ensemble models, and combination model). The proposed model is also validated by the U.S. data. Forecasts indicate that the energy demand of China will increase to 4.957343 billion Tons of standard Coal Equivalent in 2021, implying that China should speed up its transition to an energy-efficiency economy.
Keywords: Energy consumption; Forecast; Error compensation; Decomposition-ensemble; Wavelet transform (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219317402
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:189:y:2019:i:c:s0360544219317402
DOI: 10.1016/j.energy.2019.116045
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().