EconPapers    
Economics at your fingertips  
 

An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle

Binbin Yu, Jingye Yang, Dandong Wang, Junye Shi and Jiangping Chen

Energy, 2019, vol. 189, issue C

Abstract: With carbon emission levels on the rise, rapid and far-reaching action is needed to counteract global warming. Among many available strategies, CO2 is nowadays more and more often proposed as a solution for heating, cooling and refrigeration purposes since the extremely low global warming potential and being natural. In order to overcome the inherently low efficiency in high-temperature conditions and high operating pressure especially in transcritical cycles, an updated review of the advances on modified technologies to solve the drawbacks of CO2 refrigeration is provided and recent progress on the energy efficiency improvement is summarized. First, the basic principles of the CO2 refrigeration cycle and important performance characteristics are discussed. Then, a detailed discussion on different modified technologies as well as their operating fundamental, technical features and performance are provided, followed by a summary of previous studies. At the end of this review, conclusion and perspectives on the future development of this field are presented.

Keywords: Natural refrigerant; CO2; Energy efficiency; Transcritical cycle; Global warming (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219318420
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:189:y:2019:i:c:s0360544219318420

DOI: 10.1016/j.energy.2019.116147

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219318420