EconPapers    
Economics at your fingertips  
 

Influence of the controllability of electric vehicles on generation and storage capacity expansion decisions

Miguel Carrión, Ruth Domínguez and Rafael Zárate-Miñano

Energy, 2019, vol. 189, issue C

Abstract: This paper proposes a capacity investment model to analyze the influence of the controllability of the charge of plug-in electric vehicles (PEVs) in generation and storage expansion decisions. The proposed model provides the financial incentives that should be offered to PEV users in order to implement the optimal expansion decisions. Considering that the decision-making process faced by the power system planner must simultaneously consider long- and short-term uncertainties, a three-stage stochastic programming problem is formulated. In this model, capacity investments and financial incentives for PEV users are decided in the first stage, whereas operating decisions regarding the day-ahead and real-time markets are made in the second and third stages, respectively. Numerical results are provided from a realistic case study based on the isolated power system comprising Lanzarote and Fuerteventura islands in Spain.

Keywords: Controlled charge; Financial incentives; Energy storage systems; Long- and short-term uncertainties; Stochastic programming (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219318511
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:189:y:2019:i:c:s0360544219318511

DOI: 10.1016/j.energy.2019.116156

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219318511