A novel insight into biomass pyrolysis – The process analysis by identifying timescales of heat diffusion, heating rate and reaction rate
Dariusz Kardaś,
Paulina Hercel,
Sylwia Polesek-Karczewska and
Izabela Wardach-Świȩcicka
Energy, 2019, vol. 189, issue C
Abstract:
The complex nature of pyrolysis that involves coupled physical and chemical sub-processes is a bottleneck for its in-depth recognition. This is also due to physical-chemical parameters, which appear insufficiently identified, particularly for biomass. This study is motivated by the inconsistencies in the description of wood pyrolysis processes and primarily refers to the uncertainties in terms of kinetics of reaction. A new approach to analyze the biomass devolatilization was discussed. A strong emphasis was placed on the crucial role of thermal transport processes and their impact on the kinetics of pyrolysis of a single sample. Characteristic timescales influencing each other, namely: heating rate, heat transfer and reaction rates, were considered. The theoretical research was conducted with a use of a simple two-equation model. A standard heat transfer equation for the sample and a mass conservation equation with slightly different approach were implemented. Mass loss curves and temperature profiles were presented for very low heating rate (1.7K/min) and high heating rate (170K/min) for samples of size ranging from 0.49 mm to 15.4 mm, while assuming different reaction rates. Based on the calculation results, the possible role of the process timescales in analysing the kinetics of pyrolysis was outlined.
Keywords: Biomass pyrolysis; Heat flow rate; Heating rate; Reaction rate; TGA; Damköhler number (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219318547
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:189:y:2019:i:c:s0360544219318547
DOI: 10.1016/j.energy.2019.116159
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().