EconPapers    
Economics at your fingertips  
 

Exergoenvironmental results of a eucalyptus biomass-fired power plant

Eduardo J.C. Cavalcanti, Monica Carvalho and Jonathan L. B. Azevedo

Energy, 2019, vol. 189, issue C

Abstract: Forest biomass has always played an important role in the Brazilian energy mix, with eucalyptus presenting high levels of production and productivity. Due to the high expected potential of this woody biomass, this study assesses this resource for thermal energy production, contributing to the expansion of this sector and to energy transition strategies. This study developed a Life Cycle Assessment (LCA) to quantify the environmental impacts associated with the combustion of eucalyptus. LCA data, which included the procurement of eucalyptus and wood ash treatment, was implemented in exergy and exergoenvironmental analyses, based on the SPecific Exergy COsting (SPECO) approach, for a steam power plant fueled by eucalyptus biomass. Fuel combustion takes into account the formation of pollutants. The high moisture content of biomass affects the overall and boiler exergy efficiencies. The components with worse environmental performance are those with high environmental impact rates associated with exergy destruction (feed water and pump). The environmental impact rate per exergy unit of electricity is 7715 mPt/GJ. A sensitivity analysis verifies the effect of biomass moisture on boiler efficiency and on the specific environmental impact associated with power, concluding that an increase in boiler efficiency increases global efficiency and decreases the specific environmental impact, resulting in a reduction of global exergy destruction.

Keywords: Exergy; Exergoenvironmental analysis; Steam turbine; Biomass; Eucalyptus (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219318833
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:189:y:2019:i:c:s0360544219318833

DOI: 10.1016/j.energy.2019.116188

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219318833