Coordinated optimal design of zero/low energy buildings and their energy systems based on multi-stage design optimization
Hangxin Li and
Shengwei Wang
Energy, 2019, vol. 189, issue C
Abstract:
As promising means to reduce carbon emission and energy consumption, zero/low energy buildings have been attracting increasing attentions. Multi-stage design optimization methods have been developed for zero/low energy buildings and their energy systems especially when a large number of design variables need to be optimized. However, these methods ignore the interactions between building envelope and energy system design optimizations, which can be addressed by simultaneous optimization methods requiring huge computation cost. In this study, a coordinated optimal design method is proposed as a computation cost-effective method for stand-alone and grid-connected zero/low energy buildings and their energy systems on the basis of multi-stage design optimization methods, to effectively consider the interactions between building envelope and energy system design optimizations. An iterative approach is adopted to coordinate multi-stage optimizations of building envelope and energy systems. The Hong Kong zero carbon building is used as the reference building to test and validate the proposed method. The results and experiences of the case studies show that the proposed coordinated design method can provide global optimal designs efficiently and robustly. The life cycle “cost” of the optimal designs is 4% less and unmet cooling load is over 22% less compared with existing multi-stage design methods.
Keywords: Design optimization; Multi-stage design optimization; Zero energy building; Low energy building; Energy system (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219318973
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:189:y:2019:i:c:s0360544219318973
DOI: 10.1016/j.energy.2019.116202
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().