Photovoltaic power forecasting based LSTM-Convolutional Network
Kejun Wang,
Xiaoxia Qi and
Hongda Liu
Energy, 2019, vol. 189, issue C
Abstract:
The volatile and intermittent nature of solar energy itself presents a significant challenge in integrating it into existing energy systems. Accurate photovoltaic power prediction plays an important role in solving this problem. With the development of deep learning, more and more scholars have applied the deep learning model to time series prediction and achieved very good results. In this paper, a hybrid deep learning model (LSTM-Convolutional Network) is proposed and applied to photovoltaic power prediction. In the proposed hybrid prediction model, the temporal features of the data are extracted first by the long-short term memory network, and then the spatial features of the data are extracted by the convolutional neural network model. In order to show the superior performance of the proposed hybrid prediction model, the prediction results of the hybrid model are compared with those of the single model (long-short term memory network, convolutional neural network) and the hybrid network (Convolutional-LSTM Network) model, and the results of eight error evaluation indexes are given. The results show that the hybrid prediction model has better prediction effect than the single prediction model, and the proposed hybrid model (extract the temporal characteristics of data first, and then extract the spatial characteristics of data) is better than Convolutional-LSTM Network (extract the spatial characteristics of data first, and then extract the temporal characteristics of data).
Keywords: Photovoltaic power forecasting; Convolutional neural network; Long-short term memory; LSTM-Convolutional network; Convolutional-LSTM network; Deep learning (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (55)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219319206
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:189:y:2019:i:c:s0360544219319206
DOI: 10.1016/j.energy.2019.116225
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().