EconPapers    
Economics at your fingertips  
 

Investigation of combustion and emissions of an SI engine with ethanol port injection and gasoline direct injection under lean burn conditions

Xiumin Yu, Zezhou Guo, Ping Sun, Sen Wang, Anshi Li, Hang Yang, Zhe Li, Ze Liu, Jingyuan Li and Zhen Shang

Energy, 2019, vol. 189, issue C

Abstract: In order to reach the goal of energy conservation and pollution emissions reduction, the combustion and emissions of a combined injection engine with ethanol port injection and gasoline direct injection under lean burn conditions are investigated in this paper. The experiments are carried out by using different direct injection timing (DIT), gasoline addition ratio (αgasoline) and excess air ratios (λ). The results indicate that Tmax declines after gasoline addition at λ = 1, 1.2, while increases after gasoline addition at λ = 1.4. The IMEP reaches the maximum value at DIT = 90 or 105 °CA BTDC and 0%, 10% and 30% gasoline addition bring the highest IMEP at λ = 1, 1.2 and 1.4, respectively. The COVIMEP decreases continuously with the increase of αgasoline and the EPI+GDI mode has great advantages in improving the combustion stability under λ = 1.4 condition. As for gaseous emissions, from λ = 1 to λ = 1.4, HC emissions change from increasing trend to the decreasing trend with the increase of αgasoline, while the NOx emissions show the opposite. As for particle number, at λ = 1 and 1.2, the total particle number (TPN) shows an upward trend with the increase of αgasoline. When λ = 1.4, TPN decreases with the increase of αgasoline.

Keywords: Ethanol/gasoline; Combined injection; Direct injection timing; Lean burn; Particle number (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219319267
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:189:y:2019:i:c:s0360544219319267

DOI: 10.1016/j.energy.2019.116231

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219319267