EconPapers    
Economics at your fingertips  
 

Theoretical study on the reduction reactions from solid char(N): The effect of the nearby group and the high-spin state

Hai Zhang, Lei Luo, Jiaxun Liu, Anyao Jiao, Jianguo Liu and Xiumin Jiang

Energy, 2019, vol. 189, issue C

Abstract: A fundamental understanding of the reduction reactions from solid char(N) is proposed with the aim of providing useful information to aid in minimising NOx emission. The direct reduction with (a) nearby radical; (b) nearby oxygen and (c) nearby vacancy is calculated. The results show that the nearby oxygen will increase the activation energy by 51.8 kJ/mol and the nearby vacancy will reduce the exothermicity by 269.7 kJ/mol. This leads us to the firm conclusion that the nearby radical site will provide a favorable route. The indirect reduction reactions from surface migration are also determined. According to the calculated results, the high-spin singlet reactions are more complicated than the low-spin triplet reactions. The barrier height involved in the singlet reactions is much lower than that encountered in the triplet reactions, indicating that the reaction with singlets holds potential of being an important channel for N2 production. Our qualitative analysis of the density functional theory (DFT) results confirms that the high-spin excited-state changing the electronic properties of the carbonaceous surface is much more favorable for the reduction than the low-spin ground-state. Much more emphasis therefore should be placed on the high-spin states during the mechanism study of the heterogeneous reactions.

Keywords: DFT; Nearby group; Ground state; Excited state (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219319814
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:189:y:2019:i:c:s0360544219319814

DOI: 10.1016/j.energy.2019.116286

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219319814