Characteristics of microalgae spirulina biodiesel with the impact of n-butanol addition on a CI engine
Upendra Rajak,
Prerana Nashine and
Tikendra Nath Verma
Energy, 2019, vol. 189, issue C
Abstract:
The aim of the present study is to investigate the effect of ternary blends of n-butanol-spirulina microalgae biodiesel and diesel fuel on compression ignition engine characteristics. Investigation was performed comparing n-butanol blended with microalgae spirulina biodiesel (MSB), low sulphur diesel and pure biodiesel at different engine loads. The MSB (40, 30 and 20%) – n butanol (10, 20 and 30%) blends were 50% with low sulphur diesel fuel in volume basis as B1 (LSD50-MSB40-nB10), B2 (LSD50-MSB30-nB20) and B3 (LSD50-MSB20-nB30). The comparison was made with diesel, biodiesel and n-butanol blended fuels which shows a reduction in exhaust gas temperature, Bosch smoke number (BSN), and brake specific particulate matter (BSPM) emission while showing higher specific fuel consumption (SFC), carbon dioxide, and nitrogen oxides emissions. The B20 blend led to a slight reduction in BTE (0.75%), NOX emission (12.58%), BSN (8.95%), and BSPM emission (31.88%) while increasing SFC as compared to diesel fuel. With the addition of the n-butanol in the diesel - microalgae spirulina biodiesel blends, brake thermal efficiency (BTE) has significantly improved during higher heat release rate and cylinder pressure while reduction in smoke and BSPM emissions at all engine loads for B1, B2 and B3 blends.
Keywords: Compression ignition engine; Engine characteristics; Ternary blend; Spirulina; Simulation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219320067
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:189:y:2019:i:c:s0360544219320067
DOI: 10.1016/j.energy.2019.116311
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().