An assessment of global electric power consumption using the Defense Meteorological Satellite Program-Operational Linescan System nighttime light imagery
Linlin Lu,
Qihao Weng,
Yanhua Xie,
Huadong Guo and
Qingting Li
Energy, 2019, vol. 189, issue C
Abstract:
Industrialization and urbanization have led to a remarkable increase of electric power consumption (EPC) during the past decades. To assess the changing patterns of EPC at the global scale, this study utilized nighttime lights in conjunction with population and built-up datasets to map EPC at 1 km resolution. Firstly, the inter-calibrated nighttime light data were enhanced using the V4.0 Gridded Population Density data and the Global Human Settlement Layer. Secondly, linear models were calibrated to relate EPC to the enhanced nighttime light data; these models were then employed to estimate per-pixel EPC in 2000 and 2013. Finally, the spatiotemporal patterns of EPC between the periods were analyzed at the country, continental, and global scales. The evaluation of the EPC estimation shows a reasonable accuracy at the provincial scale with R2 of 0.8429. Over 30% of the human settlements in Asia, Europe, and North America showed apparent EPC growth. At the national scale, moderate and high EPC growth was observed in 45% of the built-up areas in East Asia. The spatial clustering patterns revealed that EPC decreased in Russia and the Western Europe. This study provides fresh insight into the spatial pattern and variations of global electric power consumption.
Keywords: Electric power consumption; Global spatial pattern; Metropolises; Nighttime lights; Remote sensing (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219320468
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:189:y:2019:i:c:s0360544219320468
DOI: 10.1016/j.energy.2019.116351
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().