Using atmospheric inputs for Artificial Neural Networks to improve wind turbine power prediction
Jordan Nielson,
Kiran Bhaganagar,
Rajitha Meka and
Adel Alaeddini
Energy, 2020, vol. 190, issue C
Abstract:
A robust machine learning methodology is used to generate a site-specific power-curve of a full-scale isolated wind turbine operating in an atmospheric boundary layer to drastically improve the power predictions, and, thus, the forecasting of the monthly energy production estimates. The study has important implication in measuring the financial feasibility of wind farms by improving the accuracy of monthly energy estimates. The significance of the study is that atmospheric stability and air-density are accounted in the power predictions of the wind turbine. Artificial Neural Networks (ANN) machine learning approach is used to generate multi-parameter input models to estimate the power produced by the wind turbine. The ANN model in this study uses Feed Forward Back Propagation (FFBP) algorithm. The power- and wind-data is obtained from a 2.5 MW wind turbine that has a Meteorological tower located 900 m Southwest of the wind turbine in Kirkwood, Iowa, USA. The study investigates the role of atmospheric boundary-layer metrics – Wind Speed, Density (a measure of stratification), Richardson Number, turbulence intensity, and wind shear as input parameters into the ANN model. The study investigates the influence of FFBP ANN hyper-parameters on the power prediction accuracy. Comparison of the FFBP ANN model to other power curve correction techniques demonstrated an improvement in the Mean Absolute Error (MAE) of 40% when compared to the density correction (the next closest). The five-parameter 4-layer FFBP ANN has an average energy production error of 0.4% for the nine months while the IEC this error is −3.7% and for the air density correction the error is −1.9%, respectively. Finally, the study determines the performance of the FFBP ANN model for different atmospheric stability regimes (Unstable, Stable, Strongly Stable, Strongly Unstable and Neutral) classified using two criterions - Richardson number and Turbulence intensity. The largest MAE occurs during the strongly stable regime of the atmospheric boundary layer for both criteria.
Keywords: ANN; Wind energy; Power predictions; Atmospheric boundary layer; Turbulence; Wind turbine (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219319681
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:190:y:2020:i:c:s0360544219319681
DOI: 10.1016/j.energy.2019.116273
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().