EconPapers    
Economics at your fingertips  
 

Investigation on the performance of a novel forward-folding rotor used in a downwind horizontal-axis turbine

Haoran Meng, Zhe Ma, Bingzheng Dou, Pan Zeng and Liping Lei

Energy, 2020, vol. 190, issue C

Abstract: A novel forward-folding rotor (Downwind Forward-Folding Rotor, DFFR) used in a downwind horizontal-axis turbine is presented in this paper. This novel wind turbine is designed to align the combination of gravitational, centrifugal, and thrust forces along the blade path, which can result in primarily tensile loads instead of cantilever loads on the blades. The power performance of the DFFR is validated to have no significant degradation, compared with that of a conventional rotor. The DFFR blades fold forward at a power-limited condition, which induces the change of the blade pitch angle and cone angle and thus maintains a constant power output. HAWT prototypes with different fold angles and the corresponding power coefficients were investigated in a wind tunnel. It is found that the maximum power coefficient decreases by 72.8% when the blades fold from 25° to 0°. The fold angle control strategy maintaining constantly the rotor power output at 3.95 W was acquired based on the experiment data. Moreover, a brief comparison of blade root bending moment between the DFFR and a utility-scale rotor is presented, indicating that the peak blade root bending moment can be reduced by 24.1% by the blade forward-folding method.

Keywords: Downwind horizontal-axis turbine; Blade forward-folding; Wind tunnel experiment; Constant power output (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219320791
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:190:y:2020:i:c:s0360544219320791

DOI: 10.1016/j.energy.2019.116384

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:190:y:2020:i:c:s0360544219320791