Using a self-adaptive grey fractional weighted model to forecast Jiangsu’s electricity consumption in China
Xiaoyue Zhu,
Yaoguo Dang and
Song Ding
Energy, 2020, vol. 190, issue C
Abstract:
The remarkable prediction performance of electricity consumption has always assumed particular importance for electric power utility planning and economic development. On account of the complexity and uncertainty of the electricity system, this paper establishes a self-adaptive grey fractional weighted model to predict Jiangsu’s electricity consumption, which efficiently enhances the prediction quality of electricity consumption. This newly constructed grey model introduces the fractional weighted coefficients to design a novel initial condition. Compared with the old one in the conventional grey models, the newly optimized initial condition has a flexible structure, which has advantages in capturing the dynamic characteristics of the electricity consumption observations. In addition, to further promote the forecasting precision, the adjustable fractional weighted coefficients and corresponding time parameter of the initial condition are estimated by utilizing the Particle Swarm Algorithm (PSO). Furthermore, five competing models are employed to forecast Jiangsu’s electricity consumption in China, which certifies the validity of the established model. Experimental results illustrate that the newly designed model has significant advantages over other five competing models. According to the forecasted results, electricity consumption in Jiangsu Province is expected to reach 6778 billion kilowatt-hours in 2020, while the growth rate will fall down by 1.11%. Therefore, several proposals are made for decision-makers.
Keywords: Grey system; Grey prediction model; Novel initial condition; Fractional grey model; Electricity consumption prediction (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219321127
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:190:y:2020:i:c:s0360544219321127
DOI: 10.1016/j.energy.2019.116417
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().