Constructal design for supercharged boiler superheater
Huijun Feng,
Zhuojun Xie,
Lingen Chen,
Zhixiang Wu and
Shaojun Xia
Energy, 2020, vol. 191, issue C
Abstract:
Constructal design of a SB superheater is carried out under the prerequisite of fixed total heat exchange area to realize its performance improvement. A complex function (CF) which consists of the heat transfer rate and power consumption of the SB superheater is considered as the optimization objective, and the tube outer diameter (TOD), number of tubes per row (NTPR) and number of the tube rows (NTR) are optimized, respectively. The optimal construct and corresponding optimal performance of the SB superheater are obtained. The influences of the heat preservation coefficient (HPC), excess air coefficient (ECA) and fuel consumption rate (FCR) on the optimization results are investigated. The research results indicate that compared with the initial performances of the superheater, the CFs after primary optimizations for the variables of TOD, NTPR and NTR are reduced by 2.6%, 0.9% and 2.6%, respectively. The CF can be further reduced by double and triple optimizations, respectively. Augmenting the HPC, ECA and FCR can all boost the overall performance of the boiler superheater. The weight coefficient has both quantitative and qualitative effects on the optimal results. The research results gained from this paper can be of theoretical assistances to the structure designs of different SB superheaters.
Keywords: Constructal theory; Boiler superheater; Heat transfer rate; Power consumption; Generalized thermodynamic optimization (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219321796
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:191:y:2020:i:c:s0360544219321796
DOI: 10.1016/j.energy.2019.116484
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().