EconPapers    
Economics at your fingertips  
 

Characterization of solid char produced from pyrolysis of the organic fraction of municipal solid waste, high volatile coal and their blends

Diyar Tokmurzin, Botagoz Kuspangaliyeva, Berik Aimbetov, Bexultan Abylkhani, Vassilis Inglezakis, Edward J. Anthony and Yerbol Sarbassov

Energy, 2020, vol. 191, issue C

Abstract: In this study, the organic fraction of municipal solid waste (Org-MSW) was blended with high-volatile coal (HVC) in proportions of 25/75%, 50/50%, 75/25% by weight. Pyrolysis of these mixtures was then investigated in a thermogravimetric analyzer (TGA) and a horizontal tube furnace under a nitrogen environment. The mass loss rate of samples, differential thermogravimetry (DTG) curves and kinetic analysis of the samples were compared for both blended and non-blended samples. Higher gas yields were seen with increasing pyrolysis temperature for both samples. In addition, the kinetic analysis indicated that the apparent activation energy values of org-MSW samples varied from 535 to 5284 kJ/kmol (over the temperature range of 100–887 °C), while the values for HVC were 247–962 kJ/kmol. The activation energy for HVC varied with temperature and the highest value of 2036 kJ/kmol was found in the temperature range of 336–490 °C. Comparable results were obtained between the TGA and fixed bed tests on the residual char fraction. The findings of this work will be very important in developing a co-firing technology for solid waste residuals and coal for energy production.

Keywords: Pyrolysis; Organic waste; High volatile coal; Char characterization (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219322571
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:191:y:2020:i:c:s0360544219322571

DOI: 10.1016/j.energy.2019.116562

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:191:y:2020:i:c:s0360544219322571