Carbon black nano particle loaded lauric acid-based form-stable phase change material with enhanced thermal conductivity and photo-thermal conversion for thermal energy storage
Amit Kumar Mishra,
B.B. Lahiri and
John Philip
Energy, 2020, vol. 191, issue C
Abstract:
We report significantly high enhancements in thermal conductivity and photo-thermal conversion for lauric acid-based phase change material (PCM), loaded with carbon black nano particles (CBNP). Addition of 25 wt % calcium carbonate powder to the PCM is found to arrest the material leakage during solid-liquid phase transition and the form-stable PCM showed superior thermal and mechanical properties. Thermal conductivity enhanced by ∼195% for the PCM loaded with 3.5 wt % of CBNP nano-inclusions, which is attributed to the development of interconnected percolation networks during solidification of the PCM. Superior volume filling capability and compressibility of CBNP nano-inclusions further augmented thermal conductivity enhancements in solid state. The micro-scale aggregation phenomena and the formation of quasi-2D percolation networks is observed in real time using timed stamped optical phase contrast video-microscopy. The ∼134% enhancement in photo-thermal conversion is attributed to the augmentation of extinction efficiency of the incident radiation due to multiple scattering from the micro-sized CBNP clusters, within the PCM host matrix. The excellent photo-thermal efficiency, high thermal conductivity, low cost and enhanced form-stability of the CBNP loaded PCMs at elevated temperature make them economically attractive choice for latent heat thermal energy storage applications.
Keywords: Thermal conductivity enhancement; Phase change materials; Form-stable PCM; Thermal energy storage; Carbon black nano particle; Photo-thermal conversion (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219322674
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:191:y:2020:i:c:s0360544219322674
DOI: 10.1016/j.energy.2019.116572
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().