EconPapers    
Economics at your fingertips  
 

Energy and cost efficient manganese chemical looping air separation cycle for decarbonized power generation based on oxy-fuel combustion and gasification

Calin-Cristian Cormos

Energy, 2020, vol. 191, issue C

Abstract: Oxy-fuel combustion and gasification technologies for power generation require significant oxygen consumption. The actual oxygen production method involves cryogenic systems, the most important shortcomings of this process are high ancillary electricity consumption and high capital costs. Chemical Looping Air Separation (CLAS) concept represents an emerging oxygen generation option with significantly lower energy consumption. The present work is evaluating the key performance indexes of manganese-based CLAS unit to be combined with coal and lignite oxy-fuel and gasification power plants. As comparison cases, the same power generation designs were assessed using conventional cryogenic air separation. The evaluations considered large industrial scale power plants with about 370–500 MW net electricity production and a 90% overall plant decarbonisation degree. The detailed investigations demonstrated that manganese-based looping cycle improves significantly the main techno-economic performances compared to the benchmark cases e.g. higher energy efficiency up to 9%, lower specific CO2 emissions down to 10%, reduced overall plant energy penalty for decarbonisation by 2–3.5 net electricity percentage points, decreased capital costs by 10–18% and electricity cost by about 7–12% etc.

Keywords: Oxygen production by chemical looping cycle; Manganese-based oxygen carrier; Decarbonized oxy-fuel combustion and gasification plants; Techno-economic assessment (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219322741
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:191:y:2020:i:c:s0360544219322741

DOI: 10.1016/j.energy.2019.116579

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:191:y:2020:i:c:s0360544219322741